Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Commun Biol ; 6(1): 556, 2023 05 24.
Artículo en Inglés | MEDLINE | ID: covidwho-20231278

RESUMEN

Since the emergence of the Omicron variants at the end of 2021, they quickly became the dominant variants globally. The Omicron variants may be more easily transmitted compared to the earlier Wuhan and the other variants. In this study, we aimed to elucidate mechanisms of the altered infectivity associated with the Omicron variants. We systemically evaluated mutations located in the S2 sequence of spike and identified mutations that are responsible for altered viral fusion. We demonstrated that mutations near the S1/S2 cleavage site decrease S1/S2 cleavage, resulting in reduced fusogenicity. Mutations in the HR1 and other S2 sequences also affect cell-cell fusion. Based on nuclear magnetic resonance (NMR) studies and in silico modeling, these mutations affect fusogenicity possibly at multiple steps of the viral fusion. Our findings reveal that the Omicron variants have accumulated mutations that contribute to reduced syncytial formation and hence an attenuated pathogenicity.


Asunto(s)
COVID-19 , Humanos , COVID-19/genética , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Mutación , Fenotipo
2.
Cerebrovasc Dis ; : 1-4, 2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: covidwho-2322021

RESUMEN

The third INTEnsive care bundle with blood pressure Reduction in Acute Cerebral hemorrhage Trial (INTERACT3) is an international, multicenter, stepped-wedge (4 phases/3 steps) cluster randomized trial involving 110 hospitals in mainly low- and middle-income countries during 2017-2022. The aim is to determine the effectiveness of a goal-directed care bundle of intensive blood pressure (BP) lowering, glycemic control, antipyrexia, and anticoagulation reversal treatment versus usual standard of care, in patients with acute intracerebral hemorrhage (ICH). After a "usual care" period, hospitals were randomly allocated to implementing care-bundle protocols for control targets (systolic BP <140 mm Hg; glucose 6.1-7.8/7.8-10.0 mmol/L according to diabetes mellitus status; temperature ≤37.5°C; normalization of anticoagulation). A sample size of 8,360 patients (mean 19 per phase per site) provides 90% power (α = 0.05) for a 5.6% absolute improvement in the primary outcome of scores on the modified Rankin scale at 6 months, analyzed by ordinal logistic regression. A detailed statistical analysis plan (SAP) was developed to prespecify the method of analysis for all outcomes and key variables collected in the trial. The primary analysis will use ordinal logistic regression adjusted for the stepped-wedge design. The SAP also includes planned sensitivity analyses, including covariate adjustments, missing data imputations, and subgroup analysis. This SAP allows transparent, verifiable, and prespecified analyses in consideration of the challenges in conducting the study during the COVID pandemic. It also avoids analysis bias arising from prior knowledge of the findings in determining the benefits and harms of a care bundle in acute ICH.

3.
mBio ; : e0323821, 2022 Jan 11.
Artículo en Inglés | MEDLINE | ID: covidwho-2275679

RESUMEN

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has become a serious threat to global public health, underscoring the urgency of developing effective therapies. Therapeutics and, more specifically, direct-acting antiviral development are still very much in their infancy. Here, we report that two hepatitis C virus (HCV) fusion inhibitors identified in our previous study, dichlorcyclizine and fluoxazolevir, broadly block human coronavirus entry into various cell types. Both compounds were effective against various human-pathogenic CoVs in multiple assays based on vesicular stomatitis virus (VSV) pseudotyped with the spike protein and spike-mediated syncytium formation. The antiviral effects were confirmed in SARS-CoV-2 infection systems. These compounds were equally effective against recently emerged variants, including the delta variant. Cross-linking experiments and structural modeling suggest that the compounds bind to a hydrophobic pocket near the fusion peptide of S protein, consistent with their potential mechanism of action as fusion inhibitors. In summary, these fusion inhibitors have broad-spectrum antiviral activities and may be promising leads for treatment of SARS-CoV-2, its variants, and other pathogenic CoVs. IMPORTANCE SARS-CoV-2 is an enveloped virus that requires membrane fusion for entry into host cells. Since the fusion process is relatively conserved among enveloped viruses, we tested our HCV fusion inhibitors, dichlorcyclizine and fluoxazolevir, against SARS-CoV-2. We performed in vitro assays and demonstrated their effective antiviral activity against SARS-CoV-2 and its variants. Cross-linking experiments and structural modeling suggest that the compounds bind to a hydrophobic pocket in spike protein to exert their inhibitory effect on the fusion step. These data suggest that both dichlorcyclizine and fluoxazolevir are promising candidates for further development as treatment for SARS-CoV-2.

5.
Microbiol Spectr ; : e0127022, 2022 Oct 31.
Artículo en Inglés | MEDLINE | ID: covidwho-2097932

RESUMEN

The emergence of a new type of COVID-19 patients, who were retested positive after hospital discharge with long-term persistent SARS-CoV-2 infection but without COVID-19 clinical symptoms (hereinafter, LTPPs), poses novel challenges to COVID-19 treatment and prevention. Why was there such a contradictory phenomenon in LTPPs? To explore the mechanism underlying this phenomenon, we performed quantitative proteomic analyses using the sera of 12 LTPPs (Wuhan Pulmonary Hospital), with the longest carrying history of 132 days, and mainly focused on 7 LTPPs without hypertension (LTPPs-NH). The results showed differential serum protein profiles between LTPPs/LTPPs-NH and health controls. Further analysis identified 174 differentially-expressed-proteins (DEPs) for LTPPs, and 165 DEPs for LTPPs-NH, most of which were shared. GO and KEGG analyses for these DEPs revealed significant enrichment of "coagulation" and "immune response" in both LTPPs and LTPPs-NH. A unity of contradictory genotypes in the 2 aspects were then observed: some DEPs showed the same dysregulated expressed trend as that previously reported for patients in the acute phase of COVID-19, which might be caused by long-term stimulation of persistent SARS-CoV-2 infection in LTPPs, further preventing them from complete elimination; in contrast, some DEPs showed the opposite expression trend in expression, so as to retain control of COVID-19 clinical symptoms in LTPPs. Overall, the contrary effects of these DEPs worked together to maintain the balance of LTPPs, further endowing their contradictory steady-state with long-term persistent SARS-CoV-2 infection but without symptoms. Additionally, our study revealed some potential therapeutic targets of COVID-19. Further studies on these are warranted. IMPORTANCE This study reported a new type of COVID-19 patients and explored the underlying molecular mechanism by quantitative proteomic analyses. DEPs were significantly enriched in "coagulation" and "immune response". Importantly, we identified 7 "coagulation system"- and 9 "immune response"-related DEPs, the expression levels of which were consistent with those previously reported for patients in the acute phase of COVID-19, which appeared to play a role in avoiding the complete elimination of SARS-CoV-2 in LTPPs. On the contrary, 6 "coagulation system"- and 5 "immune response"-related DEPs showed the opposite trend in expression. The 11 inconsistent serum proteins seem to play a key role in the fight against long-term persistent SARS-CoV-2 infection, further retaining control of COVID-19 clinical symptom of LTPPs. The 26 proteins can serve as potential therapeutic targets and are thus valuable for the treatment of LTPPs; further studies on them are warranted.

6.
JAMA Oncol ; 8(11): 1696-1698, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: covidwho-2047384

RESUMEN

This cross-sectional study uses 2020 mortality data in the US to analyze deaths caused by cancer and COVID-19 in terms of demographic characteristics, cancer site, and place of death.


Asunto(s)
COVID-19 , Neoplasias , Humanos , SARS-CoV-2 , Causas de Muerte , Neoplasias/epidemiología
7.
Energy Economics ; : 106252, 2022.
Artículo en Inglés | ScienceDirect | ID: covidwho-2031267

RESUMEN

Considering the severity and frequency of energy risk event shocks, this paper examines whether energy security issue is related to the propagation of significant shocks within the energy system. Relevant researches fail to concern the impact of systemic risk spillovers across energy firms on energy security and its influence mechanisms. By employing a complex network for characterizing risk event shock propagation mechanisms among high-dimensional data, our study captures the transmission of systemic risk among 128 Chinese energy firms from January 2013 to June 2021. Furthermore, using a modified spatial panel model, we find that systemic risk spillovers significantly affect energy security, and the effects are particularly salient in 2015–2016 and under COVID-19. The diffusion of risk event shocks in the Chinese energy system causes a decline in energy production and energy investment, further influencing short- and long-term energy security, respectively. Compared to the energy investment channel during 2015–2016 volatile periods, the negative effect of the COVID-19 crisis on security issues relies more on the energy production channel. The results also show a heterogeneous effect of individual energy firms' risk event shocks on energy security, and the influence of the systemic risk spillovers caused by state-owned firms' risk events is more significant than private firms. Overall, in dealing with frequent energy shocks, collaborations among energy firms, energy sectors, and the government are important for ensuring a country's energy security.

8.
BMC Infect Dis ; 22(1): 707, 2022 Aug 25.
Artículo en Inglés | MEDLINE | ID: covidwho-2009359

RESUMEN

BACKGROUND: Tuberculosis (TB) had been the leading lethal infectious disease worldwide for a long time (2014-2019) until the COVID-19 global pandemic, and it is still one of the top 10 death causes worldwide. One important reason why there are so many TB patients and death cases in the world is because of the difficulties in precise diagnosis of TB using common detection methods, especially for some smear-negative pulmonary tuberculosis (SNPT) cases. The rapid development of metabolome and machine learning offers a great opportunity for precision diagnosis of TB. However, the metabolite biomarkers for the precision diagnosis of smear-positive and smear-negative pulmonary tuberculosis (SPPT/SNPT) remain to be uncovered. In this study, we combined metabolomics and clinical indicators with machine learning to screen out newly diagnostic biomarkers for the precise identification of SPPT and SNPT patients. METHODS: Untargeted plasma metabolomic profiling was performed for 27 SPPT patients, 37 SNPT patients and controls. The orthogonal partial least squares-discriminant analysis (OPLS-DA) was then conducted to screen differential metabolites among the three groups. Metabolite enriched pathways, random forest (RF), support vector machines (SVM) and multilayer perceptron neural network (MLP) were performed using Metaboanalyst 5.0, "caret" R package, "e1071" R package and "Tensorflow" Python package, respectively. RESULTS: Metabolomic analysis revealed significant enrichment of fatty acid and amino acid metabolites in the plasma of SPPT and SNPT patients, where SPPT samples showed a more serious dysfunction in fatty acid and amino acid metabolisms. Further RF analysis revealed four optimized diagnostic biomarker combinations including ten features (two lipid/lipid-like molecules and seven organic acids/derivatives, and one clinical indicator) for the identification of SPPT, SNPT patients and controls with high accuracy (83-93%), which were further verified by SVM and MLP. Among them, MLP displayed the best classification performance on simultaneously precise identification of the three groups (94.74%), suggesting the advantage of MLP over RF/SVM to some extent. CONCLUSIONS: Our findings reveal plasma metabolomic characteristics of SPPT and SNPT patients, provide some novel promising diagnostic markers for precision diagnosis of various types of TB, and show the potential of machine learning in screening out biomarkers from big data.


Asunto(s)
COVID-19 , Mycobacterium tuberculosis , Tuberculosis Pulmonar , Tuberculosis , Aminoácidos , Biomarcadores , COVID-19/diagnóstico , Prueba de COVID-19 , Ácidos Grasos , Humanos , Lípidos , Aprendizaje Automático , Metaboloma , Tuberculosis Pulmonar/diagnóstico
9.
PLoS One ; 17(8): e0272364, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-1987156

RESUMEN

Neutralizing antibodies targeting the SARS-CoV-2 spike protein have shown a great preventative/therapeutic potential. Here, we report a rapid and efficient strategy for the development and design of SARS-CoV-2 neutralizing humanized nanobody constructs with sub-nanomolar affinities and nanomolar potencies. CryoEM-based structural analysis of the nanobodies in complex with spike revealed two distinct binding modes. The most potent nanobody, RBD-1-2G(NCATS-BL8125), tolerates the N501Y RBD mutation and remains capable of neutralizing the B.1.1.7 (Alpha) variant. Molecular dynamics simulations provide a structural basis for understanding the neutralization process of nanobodies exclusively focused on the spike-ACE2 interface with and without the N501Y mutation on RBD. A primary human airway air-lung interface (ALI) ex vivo model showed that RBD-1-2G-Fc antibody treatment was effective at reducing viral burden following WA1 and B.1.1.7 SARS-CoV-2 infections. Therefore, this presented strategy will serve as a tool to mitigate the threat of emerging SARS-CoV-2 variants.


Asunto(s)
Bacteriófagos , COVID-19 , Anticuerpos de Dominio Único , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Bacteriófagos/metabolismo , Humanos , Unión Proteica , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus
10.
International Journal of Logistics Research and Applications ; : 1-27, 2022.
Artículo en Inglés | Taylor & Francis | ID: covidwho-1978139
11.
Front Cardiovasc Med ; 9: 851214, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-1793037

RESUMEN

Background: This study aimed to investigate the impact of the COVID-19 pandemic on ST-segment elevation myocardial infarction (STEMI) care in China. Methods: We conducted a multicenter, retrospective cohort study in Hunan province (adjacent to the epidemic center), China. Consecutive patients presenting with STEMI within 12 h of symptom onset and receiving primary percutaneous coronary intervention, pharmaco-invasive strategy and only thrombolytic treatment, were enrolled from January 23, 2020 to April 8, 2020 (COVID-19 era group). The same data were also collected for the equivalent period of 2019 (pre-COVID-19 era group). Results: A total of 610 patients with STEMI (COVID-19 era group n = 286, pre-COVID-19 era group n = 324) were included. There was a decline in the number of STEMI admissions by 10.5% and STEMI-related PCI procedures by 12.7% in 2020 compared with the equivalent period of 2019. The key time intervals including time from symptom onset to first medical contact, symptom onset to door, door-to-balloon, symptom onset to balloon and symptom onset to thrombolysis showed no significant difference between these two groups. There were no significant differences for in-hospital death and major adverse cardiovascular events between these two groups. Conclusion: During the COVID-19 pandemic outbreak in China, we observed a decline in the number of STEMI admissions and STEMI-related PCI procedures. However, the key quality indicators of STEMI care were not significantly affected. Restructuring health services during the COVID-19 pandemic has not significantly adversely influenced the in-hospital outcomes.

12.
ACS Pharmacol Transl Sci ; 4(5): 1675-1688, 2021 Oct 08.
Artículo en Inglés | MEDLINE | ID: covidwho-1450269

RESUMEN

The National Center for Advancing Translational Sciences (NCATS) has been actively generating SARS-CoV-2 high-throughput screening data and disseminates it through the OpenData Portal (https://opendata.ncats.nih.gov/covid19/). Here, we provide a hybrid approach that utilizes NCATS screening data from the SARS-CoV-2 cytopathic effect reduction assay to build predictive models, using both machine learning and pharmacophore-based modeling. Optimized models were used to perform two iterative rounds of virtual screening to predict small molecules active against SARS-CoV-2. Experimental testing with live virus provided 100 (∼16% of predicted hits) active compounds (efficacy > 30%, IC50 ≤ 15 µM). Systematic clustering analysis of active compounds revealed three promising chemotypes which have not been previously identified as inhibitors of SARS-CoV-2 infection. Further investigation resulted in the identification of allosteric binders to host receptor angiotensin-converting enzyme 2; these compounds were then shown to inhibit the entry of pseudoparticles bearing spike protein of wild-type SARS-CoV-2, as well as South African B.1.351 and UK B.1.1.7 variants.

13.
ACS Infect Dis ; 7(6): 1483-1502, 2021 06 11.
Artículo en Inglés | MEDLINE | ID: covidwho-1387146

RESUMEN

Viral proteases are highly specific and recognize conserved cleavage site sequences of ∼6-8 amino acids. Short stretches of homologous host-pathogen sequences (SSHHPS) can be found spanning the viral protease cleavage sites. We hypothesized that these sequences corresponded to specific host protein targets since >40 host proteins have been shown to be cleaved by Group IV viral proteases and one Group VI viral protease. Using PHI-BLAST and the viral protease cleavage site sequences, we searched the human proteome for host targets and analyzed the hit results. Although the polyprotein and host proteins related to the suppression of the innate immune responses may be the primary targets of these viral proteases, we identified other cleavable host proteins. These proteins appear to be related to the virus-induced phenotype associated with Group IV viruses, suggesting that information about viral pathogenesis may be extractable directly from the viral genome sequence. Here we identify sequences cleaved by the SARS-CoV-2 papain-like protease (PLpro) in vitro within human MYH7 and MYH6 (two cardiac myosins linked to several cardiomyopathies), FOXP3 (an X-linked Treg cell transcription factor), ErbB4 (HER4), and vitamin-K-dependent plasma protein S (PROS1), an anticoagulation protein that prevents blood clots. Zinc inhibited the cleavage of these host sequences in vitro. Other patterns emerged from multispecies sequence alignments of the cleavage sites, which may have implications for the selection of animal models and zoonosis. SSHHPS/nsP is an example of a sequence-specific post-translational silencing mechanism.


Asunto(s)
Papaína , Péptido Hidrolasas , SARS-CoV-2/enzimología , Proteasas Virales/metabolismo , Secuencia de Aminoácidos , Miosinas Cardíacas/química , Factores de Transcripción Forkhead/química , Humanos , Cadenas Pesadas de Miosina/química , Papaína/metabolismo , Péptido Hidrolasas/metabolismo , Proteína S/química , Receptor ErbB-4/química
14.
Int J Environ Res Public Health ; 18(16)2021 08 18.
Artículo en Inglés | MEDLINE | ID: covidwho-1360760

RESUMEN

Although the lockdown policy implemented during the COVID-19 pandemic indeed improved the air quality and reduced the related health risks, the real effects of the lockdown and its resulting health risks remain unclear considering the effects of unobserved confounders and the longstanding efforts of the government regarding air pollution. We compared air pollution between the lockdown period and the period before the lockdown using a difference-in-differences (DID) model and estimated the mortality burden caused by the number of deaths related to air pollution changes. The NO2 and CO concentrations during the lockdown period (17 days) declined by 8.94 µg/m3 (relative change: 16.94%; 95% CI: 3.71, 14.16) and 0.20 mg/m3 (relative change: 16.95%; 95% CI: 0.04, 0.35) on an average day, respectively, and O3 increased by 8.41 µg/m3 (relative change: 32.80%; 95% CI: 4.39, 12.43); no meaningful impacts of the lockdown policy on the PM2.5, PM10, SO2, or the AQI values were observed. Based on the three clearly changed air pollutants, the lockdown policy prevented 8.22 (95% CI: 3.97, 12.49) all-cause deaths. Our findings suggest that the overall excess deaths caused by air pollution during the lockdown period declined. It is beneficial for human health when strict control measures, such as upgrading industry structure and promoting green transportation, are taken to reduce emissions, especially in cities with serious air pollution in China, such as Shijiazhuang.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , COVID-19 , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , China/epidemiología , Ciudades , Control de Enfermedades Transmisibles , Monitoreo del Ambiente , Humanos , Pandemias , Material Particulado/análisis , SARS-CoV-2
15.
ACS Med Chem Lett ; 12(8): 1267-1274, 2021 Aug 12.
Artículo en Inglés | MEDLINE | ID: covidwho-1358337

RESUMEN

SARS-CoV-2 entry into host cells relies on the spike (S) protein binding to the human ACE2 receptor. In this study, we investigated the structural dynamics of the viral S protein at the fusion peptide (FP) domain and small molecule binding for therapeutics development. Following comparative modeling analysis and docking studies of our previously identified fusion inhibitor chlorcyclizine, we performed a pharmacophore-based virtual screen and identified two novel chemotypes of entry inhibitors targeting the FP. The compounds were evaluated in the pseudoparticle viral entry assay and SARS-CoV-2 cytopathic effect assay and showed single-digital micromole inhibition against SARS-CoV-2 as well as SARS-CoV-1 and MERS. The characterization of the FP binding site of SARS-CoV-2 S protein provides a promising target for the structure-based development of small molecule entry inhibitors as drug candidates for the treatment of COVID-19.

16.
The FASEB Journal ; 35(S1), 2021.
Artículo en Inglés | Wiley | ID: covidwho-1233926

RESUMEN

Understanding the SARS-CoV-2 virus? routes of infection, virus?host?protein interactions, and mechanisms of virus-induced cytopathic effects will greatly aid in the discovery and design of new therapeutics to treat COVID-19. Chloroquine and hydroxychloroquine, extensively explored as clinical agents for COVID-19, have multiple cellular effects including alkalizing lysosomes and blocking autophagy as well as exhibiting dose-limiting toxicities in patients. To identify an alternative lysosome-based drug repurposing opportunity we evaluated additional lysosomotropic compounds . We found that six of these compounds blocked the cytopathic effect of SARS-CoV-2 in Vero E6 cells with half-maximal effective concentration (EC50) values ranging from 2.0 to 13 ?M and selectivity indices (SIs;SI = CC50/EC50) ranging from 1.5- to >10-fold. We demonstrate how the compounds (1) blocked lysosome functioning and autophagy, (2) prevented pseudotyped particle entry, (3) increased lysosomal pH, and (4) that ROC-325 reduced viral titers in the EpiAirway 3D tissue model. Consistent with these findings, the siRNA knockdown of ATP6V0D1 blocked the HCoV-NL63 cytopathic effect in LLC-MK2 cells. Moreover, an analysis of SARS-CoV-2 infected Vero E6 cell lysate revealed significant dysregulation of autophagy and lysosomal function, suggesting a contribution of the lysosome to the life cycle of SARS-CoV-2. Our findings support targeting the lysosome to combat SARS-CoV-2 infections and inhibitors of lysosomal function could become an important component of drug combination therapies aimed at improving treatment and outcomes for COVID-19.

17.
The FASEB Journal ; 35(S1), 2021.
Artículo en Inglés | Wiley | ID: covidwho-1233885

RESUMEN

The SARS-CoV-2 virus binds to host cell surface ACE2 on the plasma membrane via the spike protein's receptor binding domain. Our work has resulted in the generation of a versatile imaging probe using recombinant Spike receptor binding domain conjugated to fluorescent quantum dots (QDs). This probe is capable of engaging in energy transfer quenching with ACE2-conjugated gold nanoparticles enabling biochemical monitoring of binding. Neutralizing antibodies and recombinant human ACE2 blocked quenching, demonstrating a specific binding interaction. In cell-based assays, we observed immediate binding of the probe on the cell surface of ACE2-expressing cells followed by endocytosis. Neutralizing antibodies and ACE2-Fc fully prevented binding and endocytosis with low nanomolar potency. Importantly, we can use this QD nanoparticle probe to identify and validate inhibitors of the SARS-CoV-2 Spike and ACE2 receptor binding in human cells. This work enables facile, rapid, and high-throughput biochemical- and cell-based screening of inhibitors for coronavirus Spike-mediated cell recognition and entry.

18.
ACS Pharmacol Transl Sci ; 4(3): 1124-1135, 2021 Jun 11.
Artículo en Inglés | MEDLINE | ID: covidwho-1233687

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has prompted researchers to pivot their efforts to finding antiviral compounds and vaccines. In this study, we focused on the human host cell transmembrane protease serine 2 (TMPRSS2), which plays an important role in the viral life cycle by cleaving the spike protein to initiate membrane fusion. TMPRSS2 is an attractive target and has received attention for the development of drugs against SARS and Middle East respiratory syndrome. Starting with comparative structural modeling and a binding model analysis, we developed an efficient pharmacophore-based approach and applied a large-scale in silico database screening for small-molecule inhibitors against TMPRSS2. The hits were evaluated in the TMPRSS2 biochemical assay and the SARS-CoV-2 pseudotyped particle entry assay. A number of novel inhibitors were identified, providing starting points for the further development of drug candidates for the treatment of coronavirus disease 2019.

19.
Mol Ther ; 29(8): 2424-2440, 2021 08 04.
Artículo en Inglés | MEDLINE | ID: covidwho-1225433

RESUMEN

Lung inflammation is a hallmark of coronavirus disease 2019 (COVID-19). In this study, we show that mice develop inflamed lung tissue after being administered exosomes released from the lung epithelial cells exposed to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Nsp12 and Nsp13 (exosomesNsp12Nsp13). Mechanistically, we show that exosomesNsp12Nsp13 are taken up by lung macrophages, leading to activation of nuclear factor κB (NF-κB) and the subsequent induction of an array of inflammatory cytokines. Induction of tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-1ß from exosomesNsp12Nsp13-activated lung macrophages contributes to inducing apoptosis in lung epithelial cells. Induction of exosomesNsp12Nsp13-mediated lung inflammation was abolished with ginger exosome-like nanoparticle (GELN) microRNA (miRNA aly-miR396a-5p. The role of GELNs in inhibition of the SARS-CoV-2-induced cytopathic effect (CPE) was further demonstrated via GELN aly-miR396a-5p- and rlcv-miR-rL1-28-3p-mediated inhibition of expression of Nsp12 and spike genes, respectively. Taken together, our results reveal exosomesNsp12Nsp13 as potentially important contributors to the development of lung inflammation, and GELNs are a potential therapeutic agent to treat COVID-19.


Asunto(s)
COVID-19/metabolismo , Exosomas/metabolismo , MicroARNs/metabolismo , Plantas/metabolismo , Neumonía/metabolismo , Células A549 , Animales , Línea Celular , Línea Celular Tumoral , Chlorocebus aethiops , Citocinas/metabolismo , Células Epiteliales/metabolismo , Humanos , Interleucina-6/metabolismo , Macrófagos Alveolares/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , SARS-CoV-2/patogenicidad , Factor de Necrosis Tumoral alfa/metabolismo , Células U937 , Células Vero
20.
Bioorg Med Chem Lett ; 40: 127906, 2021 05 15.
Artículo en Inglés | MEDLINE | ID: covidwho-1118337

RESUMEN

Zika virus has emerged as a potential threat to human health globally. A previous drug repurposing screen identified the approved anthelminthic drug niclosamide as a small molecule inhibitor of Zika virus infection. However, as antihelminthic drugs are generally designed to have low absorption when dosed orally, the very limited bioavailability of niclosamide will likely hinder its potential direct repurposing as an antiviral medication. Here, we conducted SAR studies focusing on the anilide and salicylic acid regions of niclosamide to improve physicochemical properties such as microsomal metabolic stability, permeability and solubility. We found that the 5-bromo substitution in the salicylic acid region retains potency while providing better drug-like properties. Other modifications in the anilide region with 2'-OMe and 2'-H substitutions were also advantageous. We found that the 4'-NO2 substituent can be replaced with a 4'-CN or 4'-CF3 substituents. Together, these modifications provide a basis for optimizing the structure of niclosamide to improve systemic exposure for application of niclosamide analogs as drug lead candidates for treating Zika and other viral infections. Indeed, key analogs were also able to rescue cells from the cytopathic effect of SARS-CoV-2 infection, indicating relevance for therapeutic strategies targeting the COVID-19 pandemic.


Asunto(s)
Antivirales/farmacología , Niclosamida/análogos & derivados , Niclosamida/farmacología , SARS-CoV-2/efectos de los fármacos , Virus Zika/efectos de los fármacos , Animales , Antivirales/síntesis química , Antivirales/metabolismo , Sitios de Unión , Chlorocebus aethiops , Estabilidad de Medicamentos , Humanos , Pruebas de Sensibilidad Microbiana , Microsomas Hepáticos/metabolismo , Simulación del Acoplamiento Molecular , Estructura Molecular , Niclosamida/metabolismo , Unión Proteica , Ratas , Serina Endopeptidasas/química , Serina Endopeptidasas/metabolismo , Relación Estructura-Actividad , Células Vero , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/metabolismo , Proteínas Virales/química , Proteínas Virales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA